Latest Publications

Journal of Chemical Theory and Computation

DOI: 10.1021/acs.jctc.0c00762

Photonastic materials present a directional and repeatable deformation of the material shape due to transduction from light energy to mechanical energy. Among these materials, light-responsive polymers, composed of photochromic molecules embedded in a polymer matrix, are of high interest. The present work aims at laying the foundation stone of the modeling of the photomechanical behavior of such systems by proposing a computational strategy that is able to investigate (i) the impact of the polymer matrix on the photochromic properties of a dithienylethene (DTE) switch and (ii) the impact of the photochromic reaction on the polymer environment. Contrary to previous approaches, the present model is able to propose a realistic arrangement of the photochrome embedded in the polymer film, thanks to the adaptation of the so-called “controlled-like polymerization algorithm” [Lemarchand, C. A.; J. Chem. Phys. 2019, 50, 2249...


Journal of Computational Chemistry

Electrons and protons are the main actors in play in proton coupled electron transfer (PCET) reactions, which are fundamental in many biological (i.e., photosynthesis and enzymatic reactions) and electrochemical processes. The mechanism, energetics and kinetics of PCET reactions are strongly controlled by the coupling between the transferred electrons and protons. Concerted PCET reactions are classified according to the electronical adiabaticity degree of the process. To discriminate among different mechanisms, we propose a new analysis based on the use of electron density based indexes. We choose, as test case, the 3‐Methylphenoxyl/phenol system in two different conformations to show how the proposed analysis is a suitable tool to discriminate between the different degree of adiabaticity of PCET processes. The very low computational cost of this procedure is extremely promising to analyze and provide evidences of PCET mechanisms r...

DOI: 10.1002/qua.26233

International Journal of Quantum Chemistry

DH‐SVPD is a tailored atomic basis set originally developed to enhance the domain of applicability of double‐hybrid density functionals to large molecular systems in weak interactions. In combination with any density functional belonging to this approximation, it provides an accurate estimate of noncovalent interaction energies at the cost of a double‐ζ basis set, without adding a posteriori an empirical dispersion correction. Here, we show that the accuracy/cost ratio observed previously for energy properties can be safely extended to the modeling of structural parameters of small‐ and medium‐sized organic molecules. In particular, we demonstrate that, in combination with the nonempirical PBE‐QIDH double hybrid, DH‐SVPD is competitive with very large quadruple‐ζ basis sets when modeling both covalent and noncovalent structural parameters.

DOI: 10.1002/jcc.26191

Journal of Computational Chemistry

In this article, we explore an alternative to the analytical Gauss–Bonnet approach for computing the solvent‐accessible surface area (SASA) and its nuclear gradients. These two key quantities are required to evaluate the nonelectrostatic contribution to the solvation energy and its nuclear gradients in implicit solvation models. We extend a previously proposed analytical approach for finite systems based on the stereographic projection technique to infinite periodic systems such as polymers, nanotubes, helices, or surfaces and detail its implementation in the Crystal code. We provide the full derivation of the SASA nuclear gradients, and introduce an iterative perturbation scheme of the atomic coordinates to stabilize the gradients calculation for certain difficult symmetric systems. An excellent agreement of computed SASA with reference analytical values is found for finite systems, while the SASA size‐extensivity is verified for...

DOI: 10.1021/jacs.9b13620

Journal of the American Chemical Society

The utilization of photodynamic therapy (PDT) for the treatment of various types of cancer has gained increasing attention over the last decades. Despite the clinical success of approved photosensitizers (PSs), their application is sometimes limited due to poor water solubility, aggregation, photodegradation, and slow clearance from the body. To overcome these drawbacks, research efforts are devoted toward the development of metal complexes and especially Ru(II) polypyridine complexes based on their attractive photophysical and biological properties. Despite the recent research developments, the vast majority of complexes utilize blue or UV-A light to obtain a PDT effect, limiting the penetration depth inside tissues and, therefore, the possibility to treat deep-seated or large tumors. To circumvent these drawbacks, we present the first example of a DFT guided search for efficient PDT PSs with a substantial spectral red s...

DOI: 10.1002/qua.26193

International journal of Quantum chemistry

We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods.


Physical Chemistry Chemical Physics

A dithienylethene (DTE) photochromic compound functionalized by ureidopyrimidinone (UPy) quadruple hydrogen bonding blocks was synthesized by Takeshita and coworkers [Takeshita et al., Chem. Commun., 2005, 761] in order to form a light-responsive supramolecular self-assembling system. In solution, the formation of supramolecular assemblies was only observed for one DTE isomer, namely the closed-form isomer. To rationalize this experimental finding, with the help of Molecular Dynamics (MD) and (time-dependent) DFT calculations, the behaviour of open-form and closed-form monomers, dimers, hexamers and π-stacked dimers in solution is investigated. Our simulations show that, for the open-form oligomers, the progression of the supramolecular assembly is hindered due to (i) the possible formation of a very stable cyclic dimer for the open-form parallel isomer, (ii) the relative flexibility of the open-form oligomers compared to their c...

DOI: 10.1021/acsomega.9b03964 

Journal of the American Chemical Society

The reaction mechanism involved in the decomposition of ammonium nitrate (AN) in the presence of CaCO3 and CaSO4, commonly used for stabilization and the reduction of explosivity properties of AN, was theoretically investigated using a computational approach based on density functional theory. The presented computational results suggest that both carbonate and sulfate anions can intercept an acid proton from nitric acid issued from the first step of decomposition of AN, thus inhibiting its runaway decomposition and the generation of reactive species (radicals). The reaction then leads to the production of stable products, as experimentally observed. Our modeling outcomes allow for tracing a relationship between the capability of proton acceptance of both carbonate and sulfate anions and the macroscopic behavior of these two additives as inhibitor or inert in the AN mixture.

DOI: 10.1021/jacs.9b12464

Journal of the American Chemical Society

Due to the great potential expressed by an anticancer drug candidate previously reported by our group, namely, Ru-sq ([Ru(DIP)2(sq)](PF6) (DIP, 4,7-diphenyl-1,10-phenanthroline; sq, semiquinonate ligand), we describe in this work a structure–activity relationship (SAR) study that involves a broader range of derivatives resulting from the coordination of different catecholate-type dioxo ligands to the same Ru(DIP)2 core. In more detail, we chose catechols carrying either an electron-donating group (EDG) or an electron-withdrawing group (EWG) and investigated the physicochemical and biological properties of their complexes. Several pieces of experimental evidences demonstrated that the coordination of catechols bearing EDGs led to deep-red positively charged complexes 1–4 in which the preferred oxidation state of the dioxo ligand is the uninegatively charged semiquinonate. Complexes 5 and 6, on the other hand, are blue/viol...

DOI: 10.1021/jacs.9b12762

ACS Publications

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of “structronics” (a neologism derived from “structure” and “electronics”). Through this concept, we establish, synthesize, and thoroughly study two multicomponent “super-electrophores”: 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this “super-LUMO...

Please reload